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Introduction |

@ Natural catastrophe modeling emerged in the late 1980s after events like
Hurricane Andrew and the Northridge earthquake highlighted the need for
better risk analysis.

@ The frequency and severity of climate-related disasters have exceeded some
model predictions, necessitating the development of more accurate
techniques.

@ Concerns about climate change and insurance premiums stem from
uncertainties in estimating reserves and actual losses, compounded by delays
in assessing losses.

@ Actuarial techniques such as the chain-ladder method are used to estimate
incurred but not reported claims and project ultimate loss amounts.

@ This presentation is based on the article in Fig. 1.
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Introduction I
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Figure 1: Published paper https://doi.org/10.1016/j.najef.2024.102152

Orlando (UniBa HSE) Seminario del Comitato Scientifico dell’Ordine degli July 16, 2024 5/62


https://doi.org/10.1016/j.najef.2024.102152

Highlights |

@ Objective: The study aims to predict (expected and max) financial losses,
volatility resulting from natural disasters over a period of 1 to 15 years.

@ Volatility Impact: Volatility can cause significant fluctuations in Profit and
Loss (P&L) for affected companies due to unexpected events.

@ Novelty: A new model for correlating occurrence frequencies with volatility
and estimating the maximum potential loss for each specific type of natural
disaster.

@ Reliability and Comparison: Results were compared to four reference models,
and a backtesting analysis was conducted to ensure the reliability of
predictions.

@ Applicability: Suitable for businesses, such as insurance companies, vulnerable
to extreme events, helping them manage risk and ensure stable cash flow.
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© Literature review
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Literature review |

o Natural disasters are increasingly frequent and severe due to climate change
and population growth ).

@ Predicting these events is challenging due to their nonlinearity, intermittency,
and low correlation )-

@ Traditional time series analysis tools face limitations in modeling natural
disasters due to their non-Gaussian behavior and lack of stationarity
).
@ ARCH/GARCH models are more successful on long-term horizons but may
struggle with asymmetric volatility ).

@ Point processes like the Hawkes process are used in finance and insurance to
model self-exciting events, but they may have limitations in capturing mutual
influence, as the Hawkes process assumes linear interactions between events.
This means that the impact of past events on future events is assumed to be
additive and proportional ); ).
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Literature review ||

@ Multivariate Hawkes processes, designed to model correlated sequences, may
be computationally prohibitive Embrechts et al. (2011); Hall and Willett
(2016); Eichler et al. (2017); Shang and Sun (2019).

@ Traditional approaches based on geographically located assets and adaptation
measures face data issues and require compromise, potentially leading to
over- or underestimation of losses Morton and Levy (2011); Lythe et al.
(2008); Mitchell-Wallace et al. (2017); Calder et al. (2012).

Orlando (UniBa HSE) Seminario del Comitato Scientifico dell’Ordine degli July 16, 2024 10/ 62



Outline |

© Methods and material

@ Dataset
Hurst exponent
A generalized two-factor square-root model
Forecasting the expected value
Forecasting the extreme value (VaR)
Backtesting on exceedances for model validation
Baseline models

Accuracy statistics for model predictions
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Summary of methods and material

@ Section 1: Introduction of the dataset used for numerical results.
@ Section 2: Hurst exponent

@ Section 3: Introduction of the proposed two-factor square-root model for
describing the dynamics of log-losses and their volatility.

@ Section 4: Forecast of the expected value
@ Section 5: Forecast of the extreme value (VaR)

@ Section 6: Consideration of popular backtests used for model validation
based on VaR exceedances.

@ Section 7: Consideration of baseline models for comparison and
benchmarking.
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Dataset |

@ The dataset used is sourced from the Emergency Events Database (EM-DAT)
hosted at the Centre for Research on the Epidemiology of Disasters (CRED).

@ EM-DAT contains comprehensive data on the occurrence and effects of over
23,000 technological and natural disasters worldwide, spanning from 1900 to
the present day.

@ The data frequency is on an annual basis.

@ The study focuses on losses attributed to five major natural disasters:
earthquake, storm, flood, drought, and extreme temperature.

@ Figure 2 illustrates the sum of deaths, occurrences, and total damages (in
US$) of natural disasters recorded in EM-DAT from 1900 to 2020.
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Dataset |l

%108
Drought 1.173e+07 737 1.748e+08 14
Earthquake 2.348e+06 1480 2
Extreme Temperature 1.837e+05 585 6.327e+07
10
Flood 6.984e+06 5122
Impact 0 1 3.3e+04 8
Insect Infestation 0 86 2.301e+05
6
Landslide 6.624e+04 740 1.088e+07
4
Mass Movement 4644 48 2.09e+05
Storm 1.397e+06 4244 1.461e+09 2
Volcanic Activity 9.728e+04 253 4.799e+06
0
Deaths Occurrences Damages

Figure 2: Sum of deaths, occurrences and total damages (US$) of natural disasters (1900-2020).
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Dataset Il

The data description section outlines the calculation and notation for tracking
losses over time. Initially, cumulative losses at each time point are denoted by Cy,
where L;, represents the individual loss at time h. To reduce variability in the time
series of losses, logarithmic returns are computed using the formula:

z; = In Cu
Ny

These logarithmic returns are referred to as "log-losses” for notation purposes.
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Hurst exponent |

The Hurst Exponent H helps determine whether a time series is a random walk
(H ~ 0.5), trending (H > 0.5), or mean reverting (H < 0.5) for a specific period.
In financial markets research, the Hurst Exponent aims to provide a scalar value to
identify whether a series is mean reverting, random walking, or trending. The
calculation uses the variance of a log price series to assess diffusive behavior. For
a time lag 7, the variance is given by:

Var(r) = E[(log(t + 7) — log(t))?]

Comparing the rate of diffusion to geometric Brownian motion, at large 7, the
variance is proportional to the time lag:

E[(log(t + 7) — log(t))?] ~ T

If autocorrelations exist, this relationship is modified to include an exponent 2H:

E[(log(t + ) — log(t))?] ~ 72
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Hurst exponent |l

Thus, a time series is characterized as:
e H < 0.5: Mean reverting
e H = 0.5: Geometric Brownian motion
e H > 0.5: Trending

o For natural disasters, H is around 0.24, indicating anti-persistence.
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Hurst exponent IlI

A Brownian time series, with no correlation between observations and an
estimated Hurst exponent close to 0.5, is unpredictable and exhibits random walk
behavior (see Fig. 3).

100 150 200
Observation

Figure 3: A Brownian time series (H = 0.53). Source Mansukhani (2024)
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Hurst exponent IV

An anti-persistent time series, or mean-reverting series, tends to revert to a
long-term mean, with increases likely followed by decreases and vice-versa,
indicated by a Hurst exponent less than 0.5. (see Fig. 4).

20 0 60
Observation

Figure 4: An anti persistent time series (H = 0.043). Source Mansukhani (2024)
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Hurst exponent V

A persistent time series is characterized by values that tend to continue in their
current direction in the short term, with increases likely followed by further
increases and decreases followed by further decreases. This behavior is indicated
by a Hurst exponent between 0.5 and 1.0, with larger values signifying stronger
trends. Fig. 4 demonstrates this with intra-day tick level data for an NYSE traded
fund, showing an estimated Hurst exponent of 0.95.

500 1000 1500
Observati

Figure 5: A persistent time series (H = 0.95). Source )
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A generalized two-factor square-root model |

Inspired by models used in financial analysis, like Ornstein-Uhlenbeck process for

volatility we selected a two-factor square-root model for its features matching
natural disaster dynamics.
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A generalized two-factor square-root model Il

Assume that we are working within a probability space (2, F, {F;}i>0,P). This
space consists of:

@ (): The sample space, which is the set of all possible outcomes.

@ F: The sigma-algebra, a collection of events for which probabilities can be
assigned.

o {Fi}i>0: The filtration, which is a sequence of sigma-algebras F; that
represent the information available up to time ¢. As time progresses, the
filtration {F;}+>0 gets larger, encompassing more information.

@ P: The probability measure, which assigns probabilities to the events in F.

In this setting, the dynamics of the processes we study are defined using the
filtration {F;},>0, which helps us understand how information unfolds over time.
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A generalized two-factor square-root model IlI

To introduce our generalized two-factor square-root model, let us start by
denoting with {x;};>0 and {0y }>0, respectively, the log-losses process due to
natural disasters and the corresponding volatility. Assume that the dynamics of
these processes, defined on a given a filtered probability space (Q, F, {Fi}i>0,P),
endowed with the filtration {F;},;>( evolves like a generalized two-factor
square-root model defined as follows

dry = k(0 — x¢)dt + an/|zioy| dWF 29 >0 (1)
doy = 6(y — op)dt + ny/or dW{ oo >0,

where k, 0, «, 6,7y, 7 are strictly positive constants {W;*};>¢ and {W{ };>¢ are two
correlated Brownian motions, i.e.

AWFAW? = pdt ¢ > 0.

and p € (—1,1). We can write
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A generalized two-factor square-root model IV

Wi = pW¢ +V1-p? By, (2)

where {B,};>¢ is a standard Brownian motion independent of {W; };>¢. Thus
system (1) reads as

{dxt = k(0 — z,)dt + an/[xi0¢] (/1 = p2dBy + pdW?)  x9 >0 3

doy = 6(y — o¢)dt + n/or dW7 og > 0,

Orlando (UniBa HSE) Seminario del Comitato Scientifico dell’Ordine degli July 16, 2024 25 /62



Forecasting the expected value

Recall that:

o After reviewing existing literature, it is concluded that a two-factor model is
most suitable for describing the dynamics of financial log-losses and their
volatility.

@ The proposed model introduces a nonzero correlation (p) between the
log-loss () and volatility (o) processes.

@ While more analytically tractable models exist, such as the two-factor
Gaussian model, they become unmanageable if p is nonzero.
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Forecasting the extreme value (VaR)

o Forecasted future values approximate expected values of financial log-losses
and volatility well.

@ To prevent future observations from exceeding a high level, an upper bound of
predictions (zf,,,) is needed for a 99% confidence level Value at Risk (VaR).

@ A correction term (z¢4,) is defined to achieve the VaR with a 99%
confidence level.

@ The correction term (z:1,) ensures the VaR by adjusting the predicted value
(zf,.,) and its volatility (o).

@ Extreme values are modeled assuming Z;, follows a Generalized Pareto
Distribution (GPD), a model for tails.

o GPD parameters (&, 3) are estimated using a rolling window approach with
fixed size.

@ A realization of the correction term (Z;4,,) is estimated using the sample
mean of 100,000 simulated random variables with GPD parameters.
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Backtesting on exceedances for model validation |

To check if a model can meet the expected maximum allowed exceptions, we
recur the range of tools available to risk management. We said that the upper
bound of the GPD represents the maximum loss. Therefore, similarly to what
financial institutions do to backtest their VaR, in the following we describe the
most popular methods that we are going to use to validate our model.

o Traffic Light Test (TLT) The Traffic Light Test was proposed by the Basel
Committee on Banking Supervision , ) for giving a green
light on the adopted model and it is a variant of the binomial test. The TLT
test, given a number of exceptions F, calculates the probability of observing
from 0 to E exceptions. For instance, if the actual number of exceptions
observed in a backtest exceeds the expected threshold, the model may be
deemed inadequate.
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Backtesting on exceedances for model validation Il

o Kupiec’s POF Test This test borrows its name from ) and it is
a variant on the binomial test. The Kupiec test is also named the proportion
of failures (POF) test because of how it is constructed. As well as the TLT
test, the POF test is based on the binomial distribution but, additionally, it
uses a likelihood ratio. This is to check if the probability of exceptions is
synchronized with the probability p defined by the VaR confidence level. In
case the frequency of exceptions over the backtested time series is different
than p, the VaR is rejected.

o Kupiec’'s TUFF Tests Kupiec proposed a second test called time until first
failure (TUFF) ). The TUFF test examines the timing of
the first failure occurrence. If the first failure occurs too early from a
probabilistic standpoint, the VaR is considered rejected by the test. Since
examining only the first failure can leave out important information regarding
subsequent failures, the TUFF test was designed to consider all recorded
failures.
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Backtesting on exceedances for model validation Il

o Christoffersen’s (CC) Interval Forecast Tests The Interval Forecast Tests,
also known as the CC tests, were introduced by ). The
main concept behind these tests is to evaluate whether the probability of an
exception occurring at a specific time is dependent on whether an exception
has occurred previously. Unlike the unconditional probability of observing an
exception, the CC tests focus solely on the relationship between consecutive
time intervals.
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Example on the Kupiec's POF Test |

Assume we have a time series of daily returns for an investment over 100 days.
We have calculated the Value-at-Risk (VaR) at a 95% confidence level, which
means we expect exceptions (days where the actual loss exceeds the VaR) to
occur 5% of the time.

@ n = 100 (the number of observations)

@ p = 0.05 (the expected proportion of exceptions based on the VaR confidence
level)

o x = 8 (the actual number of exceptions observed in the time series)
The likelihood ratio test statistic is given by:

_ (1—p)""p"
Hteor = =21y ((1 =)

where p = = is the observed proportion of exceptions.
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Example on the Kupiec's POF Test Il

Substituting the values:

n =100,
p = 0.05,
T =38,
R 8

We get:

_ 92 | 8
LReor = —21n ((1 0.05)?% - 0.05 >

(1—0.08)%2-0.08

Calculating the components:
(1—0.05)"2 = 0.95°2 ~ 0.012

0.05% ~ 3.9 x 10~
(1—0.08)? = 0.92%2 ~ 0.004
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Example on the Kupiec's POF Test Il

0.08% ~ 1.68 x 1077
Now we can substitute these into the formula:

0.012-3.9 x 101!
0.004 - 1.68 x 10-7

LRPOF =—2In <

LRpor = —2In (%)
LRpor = —21n (6.97 x 107%)
LRpor = —2(—7.27)
LRpor =~ 14.54

For a significance level of 5%, the critical value from the chi-squared distribution
with 1 degree of freedom is approximately 3.84. Since 14.54 > 3.84, we reject the
null hypothesis, indicating that the actual exceptions are not consistent with the
expected proportion of 5%, and therefore the VaR model may not be accurate.
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Baseline models

In this Section four baseline models for comparison and benchmarking are
considered as alternative candidates to system (1) for modelling log-losses of
natural disasters. Namely, the first-order autoregressive AR(1) model, the
two-factor Gaussian model G244, the extreme value distribution model (EVM)
and the generalized linear regression model (GLM). The AR(1) is pretty good at
predicting the average loss and volatility of the stochastic process when more
sophisticated models fail. The other three models are often used in insurance and
finance for modeling and forecasting stochastic processes as mentioned in Section
8.
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The first-order autoregressive AR(1) model

The AR(1) model is a representation of a short-memory random process satisfying
the following equation:

Yit1 = ¢+ ®Y; + €441,

with ¢ a given constant. The output random variable Y, is assumed to depend
linearly only on its previous value Y; and on the current value of a white noise
process £; with zero mean and constant variance o2 > 0. The process is
stationary if the parameter ® € (0, 1).
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The G2++ model

The G24+ model is a two-factor Gaussian model where the state process is the
sum of two correlated Gaussian factors plus a deterministic function chosen to fit
the observed real data exactly. Due to its analytic tractability, explicit formulas for
its distribution and moments can be easily derived. Gaussian models, such as the
G2++4, are widely used in practice due to their practical usefulness. For more
details see ( , Chapter V).

Under this model, the principal process Y; is expressed as the sum

Yi=r+q +¢(t),

where the processes {r;}:>0 and {g:}:+>0 satisfy

4
dge = —bqdt + CdW{, qo >0 )

{drt = —ardt+YdW] 1r9>0

with {W/ }+>0, {W }+>0 correlated Brownian motion such that dW;dW,! = pdt,
p € (—1,1) and a, 1, b, are positive constants.
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The extreme value distribution model (EVM)

Extreme value distributions are widely used in finance because they can effectively
model extreme events that cannot be represented by other distributions such as
the Gaussian, which has tails that decay exponentially quickly.
Given the location parameter a; and scale parameter as, the probability density
function for the extreme value distribution
o . i (xfal)/agfe(“"’*“l)/az
y = f(zlar,a2) = —e :
a2

It can be observed that if X has a Weibull distribution with parameters b; > 0
and by > 0, then log X has an extreme value distribution with parameters
a1 =logb; and as = 1/bs.
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Generalized linear model (GLM)

The last baseline model that we introduce for comparison is the generalized linear
model (GLM) that we use for nonlinear prediction (NLP)

Yy=cC + 626_c3m (5)

where ¢1, ¢o and c3 are some parameters we calibrate by means of a nonlinear

least squares regression. Eq. (5) is consistent with the G244+, is an industry
standard (see ); )i
)) and, in our tests, performed well in fitting data. We have
run a robust estimation with the iteratively reweighted least squares algorithm
) which, at each iteration, recalculates the weights
based on the residual from the previous iteration. This process progressively

downweights outliers and iterations continue until the weights converge.
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Accuracy statistics for model predictions |

As a measure of accuracy we adopt the following statistics:
@ The root mean squared error (RMSE), defined as

RMSE =

with ej, representing the residuals between the observed data and their
corresponding predictions, computed over N observations. The residual term
reflects how close the predicted values are to the actual observed data, where
values close to zero indicate a good match, and values close to one indicate
poor performance. To mitigate the impact of outliers, the normalized root
mean squared error (NRMSE) is used instead. This is defined as follows

RMSE
NRMSE = ———— 7
Xm,am - Xmin ’ ( )

where X4, and X,,;, are the maximum and minimum value of the
historical time series, respectively.
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Accuracy statistics for model predictions Il

@ The mean absolute percentage error (MAPE), defined below

N

1
MAPE = v h;

€h

= (8)
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Outline |

Q Results

@ Example on earthquake forecasts
@ Results on 1-year horizon
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Outline 11

@ Results on 5, 10 and 15-year horizon
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Example on earthquake forecasts |

In the figure shown in Fig. 6, the log losses of a natural disaster are represented
by a dotted black line. This line exhibits erratic and unpredictable behavior, which
poses a challenge for insurers who aim to estimate the expected losses over time.
To address this challenge, a simple moving average (SMA) is calculated based on
the realized occurrences of losses and is represented by the blue line. Note that in
our method, the SMA includes 20 points, as determined by the rolling window size
set to L' = 20. Initially calibrated with L = 10 (equivalent to ten years), we
progressively increase L by one each subsequent year (i.e., with each data point)
until it reaches 20. In addition, the forecasts calculated with Eq. 1 (red line) and
upper bound (green line) are shown. The upper bound represents the value at risk
(VaR) for the model used (described in Section 5) and is obtained using the
generalized Pareto distribution (GPD) and the methodology outlined before. The
graph illustrates that the model is very close to the SMA and, except for one
exception over 119 years, consistently predicts losses that are higher than the
peaks of realized losses.
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Example on earthquake forecasts Il

:

Earthquake
—SMA h
——Forecasts

——Upper Bounds

2 I I I I I I
20 40 60 80 100 120

t (years)

Figure 6: Earthquake Forecasts. The (dotted) black line is the log-losses of the natural disaster X, the blue
line is its SMA (ex post), the red line represents the corresponding forecasts zf; finally the green line refers to
the upper bound VaRgpp computed as zf + af + Z; with L’ = 119. Out of sample forecasts.
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Example on earthquake forecasts Il|

In addition to evaluating the logarithmic losses, we intend to estimate their
average volatility. This is of particular importance from a firm standpoint as the
aim, is not only to ensure solvency but, also, to deliver a regular stream of cash
flow to the shareholders by avoiding excessive variations due to reserves’ volatility.
Figure 7 presents a comparison between the average ex-post volatility of
logarithmic losses, represented by the simple moving average (SMA) in blue, and
our ex-ante forecast in red. As can be observed, our forecast is in good agreement
with the realized volatility, which provides support to the accuracy of our model.
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Example on earthquake forecasts IV

T
(Pointwise) Volatility

——SMA

—Forecasts

40 60 80 100 120
t (years)

Figure 7: Earthquake volatility Forecasts. The black (dotted) line is the (pointwise) volatility of the log-losses
of disaster V;, the blue line is its SMA (ex post), the red line represents the corresponding forecasts af.
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Results on 1-year horizon |

In this section we provide an overview of the findings from applying a specific
procedure to a dataset, with references to relevant sections for details. The
procedure involves computing NRMSE and MAPE for forecasted financial log
losses and volatility. The results are compared with baseline models like AR(1)
and SMA, which are typically used for forecasting smooth time series. The
calibration of the G2+-+ model is described, focusing on variations rather than
levels to control them and avoid unexpected large losses for insurers. Formulas for
predicting expected log-losses and volatility are referenced.
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Results on 1-year horizon Il

Forecasting error of considered models - Returns
Horizon Model Error Earthquake Storm Flood Drought Ext. Temp.

NRMSEg, )  3.32%  4.80% 4.92%  4.54% 2.44%
NRMSE 24.14%  20.18% 14.30%  17.55% 9.10%
1Y  NRMSEgs 19.30%  12.46% 15.98% 19.05%  11.21%
NRMSEpyy  5.79%  4.48%  4.9%  10.05%  10.21%
NRMSEcray  17.12%  5.94%  536%  7.18% 2.99%
MAPE 5, (1) 477%  3.02% 581%  6.61% 3.02%
MAPE 4z 6.59%  7.14% 1824% 20.77%  12.16%
1Y  MAPEg, 7.66%  8.42% 22.78% 21.58%  14.34%
MAPE gy ar 5.23%  3.13% 9.01%  10.23% 6.57%
MAPEGLar 8.01%  4.20% 13.35%  6.70% 2.91%

Table 1: NRMSE and MAPE between 1 year forecasts of log-losses and their SMA. The gray
highlights the results obtained with model in Eq. (1). Out of sample results.
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Results on 1-year horizon Il

Forecasting error of considered models - Volatility

Horizon Model Error Earthquake Storm  Flood Drought Ext. Temp.
NRMSE g, (1) 8.76% 9.24%  6.55% 9.85% 5.19%
NRMSE 4r 53.10% 37.35% 18.77%  39.43% 44.56%
1Y NRMSE o 24.73% 13.75% 25.48%  45.63% 20.61%
NRMSE gy pr 11.74% 8.49%  6.01% 9.6% 28.80%
NRMSEGLar 30.12% 24.52% 23.07%  33.45% 23.16%
MAPEE, (1) 5.10% 3.62%  3.60% 7.25% 2.88%
MAPE 4r 11.48% 12.07% 11.13%  20.98% 26.88%
1Y MAPE g2 12.13% 11.74% 20.68%  28.94% 10.50%
MAPEEv a 12.04% 11.71% 8.91% 14.23% 16.72%
MAPEG v 35.27% 33.20% 31.31% 48.27% 38.19%

Table 2: NRMSE and MAPE between 1 year forecasts of volatility of log-losses and their SMA.
The gray highlights the results obtained with model in Eq. (1). Out of sample results.
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Results on 1-year horizon IV

The verification of whether the correction term Z; provides a Value at Risk (VaR)
at a 99% confidence level involves examining the percentage variation of the
exceedances for all time steps beyond a certain window size. By analyzing these
variations and exceedances for different window sizes (L’ > 20), the smoothness
of hedging for insurance companies can be determined.

The Kupiec (POF), Christoffersen (CC), and TUFF tests do not reject their null
hypotheses at a 99% significance level. The corresponding p-values and L-ratios
are detailed in Table 3. Notably, these statistical measures are consistent across
different time series due to identical numbers of observations, exceedances, and
relative frequencies.

Moreover, the traffic light test results in a "green” categorization, indicating a
cumulative probability of failures of 1.6%.
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Results on 1-year horizon V

@ Statistical tests:
o Kupiec (POF), Christoffersen (CC), and TUFF tests.
o Non-rejection of null hypotheses at 99% significance level.
e p-values and L-ratios provided in Table 3.

o Traffic light test result:

o "Green"” category classification.
e Cumulative probability of failures: 1.6%.

POF CC TUFF, TBFI
Response "accept” "accept” "accept”
p-value 0.1542 0.3623 0.4297
L-ratio 2.0301 2.0301 4.0964

Table 3: 99% VaR test response. Out of sample results.
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Results on 5, 10 and 15-year horizon |

In addition to 1l-year forecasts, to highlight the power of our predictions, we apply
the analysis to the next 5Y, 10Y and 15Y horizons. As previously done, all
forecasts are out of sample. We start with a window of ten data (from T'= 10Y")
and the results are listed in Table 4.

For the reason of space, graphs are in ), where we show the
forecasted series (relative to the next year or 5, 10 and 15 years) zf,,,, o/, and
the percentage variation of Z; for any natural disaster considered.
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Results on 5, 10 and 15-year horizon ||

Forecasting error of considered models - Returns
Horizon Model Error Earthquake Storm  Flood Drought Ext. Temp.

MAPE, (1) 510%  6.23% 12.68% 20.60%  20.01%

MAPE 4z 15.46%  14.68% 29.75%  34.34%  22.52%

5Y  MAPEg, 7.79%  845% 23.01% 26.70%  20.91%
MAPE v as 591%  8.03% 2273% 2212%  20.84%
MAPEG L 6.00%  7.88% 30.84% 24.37%  12.25%

MAPE 1, (1) 532%  7.95% 17.60% 29.45%  21.45%

MAPE 1z 16.46%  18.19% 28.75%  38.50%  54.05%

10Y  MAPEg, 7.00%  10.15% 26.59%  29.70%  25.25%
MAPE gy 5 9.16%  12.85% 29.77% 36.91%  23.25%
MAPEG . 1123%  14.49% 46.64%  34.14%  23.95%
MAPEz,.(1) 6.72%  1025% 19.69% 32.68%  25.15%

PEar 18.46%  22.19% 20.84% 42.04%  56.27%

15Y  MAPEg, 9.30%  10.92% 27.09% 39.70%  29.34%
MAPE gy as 11.14%  16.63% 31.99% 38.31%  26.11%
MAPEG L 14.47%  28.97% 48.29%  35.42%  39.14%

Table 4: Different MAPE for 5, 10 and 15 years predictions. The gray highlights the results
obtained with model in Eq. (1). Out of sample results.
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Results on 5, 10 and 15-year horizon IlI

Notice that, as well as illustrated in Tables 1 and 2, we obtained similar results
with regard to the volatility and the NRMSE. For the sake of readability, we do
not show those results.

Finally, Table 5 shows the ML estimates with their confidence intervals.

Parameter Estimation Confidence interval

5 11.1052 [8.4354, 13.7750]
5 1.9818 [1.6601, 2.3036]
n 6.4060 [5.6240, 7.1880]
k 1.0422 [0.9830, 1.1014]
0 11.0976 [10.5315, 11.6637]
o 4.2469 [3.7285, 4.7653]

Table 5: Earthquake simulations. Parameters estimations and their confidence intervals.
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Outline |
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Outline 11

© Conclusions

Orlando (UniBa HSE) Seminario del Comitato Scientifico dell’Ordine degli July 16, 2024 56 /62



Conclusions |

@ Introduction of an innovative model for predicting expected losses and
volatility resulting from natural disasters over 1, 5, 10, and 15 years.

@ Model based on a generalized two-factor square-root approach incorporating
stochastic correlation via Brownian motion.

o Utilization of Generalized Pareto Distribution (GPD) to estimate maximum
potential losses (VaR) due to extreme claims.

@ Comparison of model accuracy with four baseline models: AR, G2++, EVM,
and GLM.

@ Evaluation of model performance through backtesting exceedances over
forecasted VaR, validating the chosen approach.

o Addressing deficiencies in Catastrophe Bond Pricing Models (CBPM) related
to GEV, trigger model intricacies, ARIMA limitations, and CIR inefficacy.

@ Emphasis on mitigating moral hazard for investors near the trigger,
highlighting the importance of transparent catastrophe bond pricing models.
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Conclusions |l

@ Application of the methodology to estimate insurance premiums related to
dramatic changes in specific lines of business (LOB) triggered by events like
COVID-109.

@ Contribution to the development of accurate and transparent earthquake
catastrophe bond pricing models, meeting market demands.
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