# Quando tempo ed età non corrono alla stessa velocità: una nuova prospettiva di valutazione e gestione dei rischi biometrici

#### Mario Marino

Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche "Bruno de Finetti"
Università di Trieste

Seminario del Comitato Scientifico dell'Ordine degli Attuari 17 ottobre 2025

#### --- Analisi, risultati e takeways del progetto di ricerca



A biologically inspired perspective in longevity risk management: which implications for actuaries? **Team**: A.R. Bacinello, R. Maggistro, M. Marino (P.I.), A. Olivieri

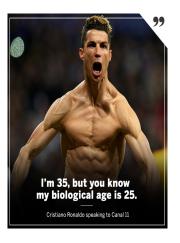
#### → Agenda

- I. Età cronologica vs età non-cronologica
- II. Implicazioni attuariali: il caso del Group Self-Annuitization (GSA)
- III. Implicazioni attuariali: il caso della Pay-As-You-Live insurance (PAYL)

## Motivazione della ricerca: un chiaro esempio dal 2020

#### Cristiano Ronaldo:

- Età cronologica = 35
- Età biologica = 25



#### lo:

- Età cronologica = 28
- Età biologica = 38



#### Misurare l'età

- Cosa sappiamo: aumento dell'aspettativa di vita umana
  - Trend differenziati per popolazione nella distribuzione dei decessi per età (cronologica)
  - --- Rischio di longevità (cronologico)
- Come modelliamo e misuriamo: modelli (deterministici o stocastici) per la costruzione di tavole di mortalità:
  - Questi modelli condividono un' implicita assunzione: l'età fluisce cronologicamente.
- Età cronologica: indicata con  $t_0$  la data di nascita e con  $t_n$  una data di riferimento, l'età cronologica è

$$x_c := t_n - t_0, \quad t_n \ge t_0.$$

#### Misurare l'età

- Età non-cronologica: l'età definita secondo di un criterio di misurazione non-cronologico
  - ▷ Esempio: misurazione basata sul deterioramento biologico ~> età biologica
- Età biologica: è l'età che indica quanto è vecchio il corpo umano a livello cellulare e molecolare. In termini generali, indicato con:
  - x<sub>b</sub> l'età biologica
  - $ightharpoonup z_1, z_2, \dots, z_m$  i parametri biologici
  - $ightharpoonup f: \mathbb{R}^m o \mathbb{R}^+$  la mappa dell'età

si ha

$$x_b := f\left(z_1, z_2, \dots, z_m\right)$$

- Punti chiave:
  - ightharpoonup Aspetti metodologici: scelta di f e dei parametri biologici
  - Disponibilità di osservazioni/evidenza empirica

#### L'approccio della scienza biologica e medica

- Età biologica stimata sulla base di fattori biologici osservati
- Step 1. Dato un gruppo di n individui, con età cronologiche diverse, rilevazioni individuali dei parametri fisiologici e molecolari (biomarkers)
- Step 2. Per l'i-esimo individuo si considera

$$x_c^{(i)} = f\left(z_1^{(i)}, \dots, z_m^{(i)}; \beta_1^{(i)}, \dots, \beta_m^{(i)}\right) + \epsilon^{(i)}$$

- $\rightarrow$  Esempio regressione lineare:  $x_c^{(i)} = \sum_{k=1}^m \beta_k^{(i)} z_k^{(i)} + \epsilon^{(i)}$
- Step 3. Si selezionano i fattori più significativi,  $\{z_k, k=1,\ldots,\ell,\,\ell\ll m\}$
- Step 4. Equazione di stima dell'età biologica

$$\hat{x}_b^{(i)} = f\left(z_1^{(i)}, \dots, z_\ell^{(i)}; \hat{\beta}_1^{(i)}, \dots, \hat{\beta}_\ell^{(i)}\right)$$

 $\leadsto$  Esempio regressione lineare:  $\hat{x}_b^{(i)} = \sum_{k=1}^{\ell} \hat{\beta}_k^{(i)} z_k^{(i)}$ 

## L'approccio della scienza biologica e medica

...e nel contesto assicurativo?

#### Pros:

- Classificazione dei rischi più fine
- Personalizzazione del premio
- Maggiore consapevolezza del rischio biometrico

#### Cons:

- ▶ Tempi e costi di raccolta ed elaborazione dei dati biologici
- → Overcoming the issue: sfruttare tecnologie digitali e metodi AI, vedasi Pay-As-You-Live insurance
- Quando non abbiamo i dati/evidenze empiriche:
- Come determinare un'età non-cronologica in assenza di osservazioni?

## Età non-cronologica e fattori biologici non osservabili

- Eterogeneità nei profili di mortalità dovuta a fattori non osservabili
  - $\rightarrow x_c \text{ vs } x_b$
  - --> Dati di mortalità aggregati e per età cronologiche
- Diversi approcci di misurazione, diversi tipi di età non-cronologica
  - Modelli con frailty: la frailty individuale identifica una correzione additiva alla durata aleatoria di vita, [Willemse, Kaas (2007)]
  - ► Studio della mortalità in funzione della sopravvivenza: approccio che si basa sull'inversione di leggi di mortalità
    - \* Longevity-Risk Adjusted Global Age, [Milevsky (2020)]
    - \* Survivorship Age, [Alvarez, Vaupel (2023)]
  - Modello di invecchiamento Markoviano: processo stocastico Markoviano per descrivere il processo d'invecchiamento umano
    - \* Physiological Age, [Lin, Liu (2007)]

- $(A_t, t \ge 0)$ : processo Markoviano omogeneo che descrive il **processo** d'invecchiamento di un individuo
- $E = \{1, ..., m\}$ : insieme stati transienti  $\leadsto$  fasi invecchiamento  $\vartriangleright$  Tanto più piccolo è lo stato, tanto più giovane è l'individuo
- m+1: stato assorbente  $\rightsquigarrow$  decesso
- Spazio degli stati:  $S = E \cup \{m+1\}$
- Il processo d'invecchiamento è descritto tramite una sequenza ordinata di transizioni:
  - ▷ In t=0 l'individuo può trovarsi in uno degli m stati di ageing  $\Rightarrow \pi = (\pi_1, \dots, \pi_m)$ : distribuzione iniziale, con  $\pi_i := \mathbb{P}(A_0 = i) \ge 0$
  - $ightharpoonup \operatorname{Per} t>0$ , l'individuo nello stato  $i\in E$  può muoversi verso lo stato d'invecchiamento successivo,  $i+1\in E$ , o verso m+1.

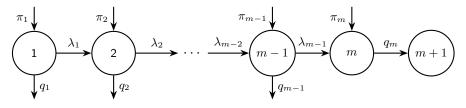


Figure: Diagramma di fase del modello d'invecchiamento Markoviano.

- $\lambda_i$ : intensità di transizione dallo stato  $i \in E$  verso  $i+1 \in E$
- $q_i$ : intensità di transizione dallo stato i verso m+1
- Matrice delle intensità del processo

$$\mathbf{\Lambda} = \begin{pmatrix} -(\lambda_1 + q_1) & \lambda_1 & 0 & \cdots & 0 \\ 0 & -(\lambda_2 + q_2) & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -q_m \end{pmatrix}$$

• Sotto le condizioni poste, il tempo al decesso è

$$\tau := \inf\{t \geq 0 \mid A_t = m+1\} \sim \mathsf{PH}(\boldsymbol{\pi}, \boldsymbol{\Lambda})$$

• Matrice delle probabilità di transizione

$$P(t) = \exp(\Lambda t)$$

 $p_t^{i,j} = \boldsymbol{P}(t)_{i,j \in E}$ : probabilità di transizione da i a j in t passi

• Funzione di sopravvivenza

$$S_0(t) = \mathbb{P}(\tau > t) = \mathbb{P}(A_t \in E) = \boldsymbol{\pi}^{\top} \boldsymbol{P}(t) \boldsymbol{e}$$

 $\bullet\,$  Prob.tà di sopravvivenza di una testa di età cronologica x per t periodi

$$S_x(t) = rac{S_0(x+t)}{S_0(t)} = oldsymbol{\pi}_x^ op oldsymbol{P}(t)oldsymbol{e},$$

$$\operatorname{\mathsf{con}} \ \boldsymbol{\pi}_x^\top = \frac{\boldsymbol{\pi}^\top \boldsymbol{P}(x)}{\boldsymbol{\pi}^\top \boldsymbol{P}(x) \boldsymbol{e}} = (\pi_{x,1}, \dots, \pi_{x,m})^\top \text{, } \pi_{x,i} = \mathbb{P} \left( A_x = i | \tau > x \right).$$

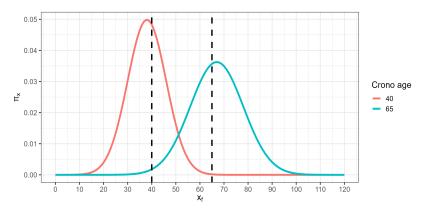


Figure: Distribuzione simulata età fisiologica rispetto a due età cronologiche, 40 e 65 anni (linee verticali). Parametri:  $\lambda_i=\lambda=1.1018615,\ q_i=\alpha e^{\beta\,i}$ , con  $\alpha=0.0000544,\ \beta=0.0715661.$ 

• Età fisiologica: può essere definita come

$$x_f := x_c + g\left(A_t\right)$$

dove  $g: \mathcal{S} \to \mathbb{R}$  deve essere tale che  $x_f \geq 0$  q.c.

• Ad esempio, si può considerare la seguente

$$x_f = x_c + \frac{A_t - 1}{m - 1}\psi$$

dove  $\psi>0$  è un parametro che rappresenta un'età cronologica estrema, e.g.  $\psi\in[100,120]$ , [Cheng et al. (2021)].

- Pianificazione e costruzione del reddito post-pensionamento
  - ▶ Rendite vitalizie: erogazione in calo, preferenza per il capitale
  - ▶ Meccanismi di auto-assicurazione prendono quota in diversi mercati
    - \* Esempio: "Lifetime pension" dell'Australian Retirement Trust
    - Esempio: "TontineIRA" (USA) e "MyTontine" (Irlanda) della Tontine Trust
- Il GSA è un fondo pensionistico nel quale gli aderenti contribuiscono alla formazione di un capitale comune che viene investito
- Gli aderenti al GSA ricevono benefici periodici vitalizi, condividendo il rischio di longevità e il rischio finanziario
- Benefici non garantiti: aggiustamento periodico in base al rendimento finanziario realizzato e alla mortalità effettiva del pool
- Il gestore del fondo non è un garante, ma un "amministratore tecnico"

- In t=0: coorte di  $L_x$  individui (x età cronologica) aderisce allo schema, ciascuno per ricevere un beneficio vitalizio periodico  $B_0$
- Ciascun aderente versa  $V_0 = B_0 \ddot{a}_x \leadsto$  il fondo iniziale disponibile dello schema è:

$$F_0^A = L_x \, B_0 \, \ddot{a}_x, \quad \text{con } \ddot{a}_x = \sum_{h=0}^{t_{\text{max}}} (1+r)^{-h}{}_h p_x$$

- Per t = 1, 2, ...:

Fondi disponibili in t =Fondi richiesti in t

- $\triangleright$  la mortalità effettiva può differire da quella attesa in t=0
- ightharpoonup il rendimento degli investimenti può differire da quello atteso in t=0
- $\rightarrow$  Necessità di aggiustare i benefici:  $B_t \geq B_0$

- $\tilde{r}_t$ : rendimento realizzato in t
- $L_{x+t}$ : numero di aderenti in vita ad età x+t
- $\tilde{p}_{x+t-1} = \frac{L_{x+t}}{L_{x+t-1}}$ : prob.tà di sopravvivenza realizzata
- L'equilibrio tecnico richiede che

$$\underbrace{\left(F_{t-1}^A - L_{x+t-1}B_{t-1}\right)\left(1 + \tilde{r}_t\right)}_{F_t^A = \text{ Fondo disponibile in t}} = \underbrace{L_{x+t}\,B_t}_{\text{Fondo richiesto in t}}$$

• Risolvendo rispetto a  $B_t$ , il **beneficio aggiustato** è:

$$B_t = B_{t-1} \frac{p_{x+t-1}}{\tilde{p}_{x+t-1}} \frac{1+r_t}{1+r}$$

## Dal GSA al Markov ageing Multi-state GSA

- Nota: in t=0, coorte considerata omogenea rispetto all'età cronologica x
- Ogni aderente ha, però, una propria età fisiologica: il pool è eterogeneo
  - differenti aspettative di vita
  - > differenti processi di invecchiamento
  - differenti bisogni finanziari
- Design di un GSA che preveda benefici differenziati per stato d'invecchiamento

## Multi-state GSA: ingredienti

- Ipotesi:  $\tilde{r}_t = r$
- In t = 0:  $L_x$  individui aderiscono al GSA e soggetti ad un congruo processo di classificazione, da cui  $L_x^i$  individui nello stato i
- $B_0^i$ : beneficio iniziale, stato i
- $V_0^i$ : capitale iniziale stato i, definito come

$$V_0^i = \sum_{j \ge i}^m B_0^j \ddot{a}_x^{i,j},$$

dove  $\ddot{a}_x^{i,j} = \sum_{h=0}^{t_{\max}} (1+r)^{-h}{}_h p_x^{i,j}$  è il valore attuariale della rendita pagata nello stato j, con  ${}_h p_x^{i,j} = P(h)_{i,j}$ .

•  $F_t^A$ : fondo disponibile a livello di pool al tempo t

$$F_t^A = \left(F_{t-1}^A - \sum_{i=1}^m L_{x+t-1}^i B_{t-1}^i\right) (1+r)$$

a partire da  $F_0^A = \sum_{i=1}^m L_x^i V_0^i$ .

- $V^i_t = \sum_{j \geq i}^m B^j_t \ddot{a}^{i,j}_{x+t}$ : fondo richiesto su base individuale nello stato i
- ullet  $F_t^R$ : fondo richiesto a livello di pool al tempo t

$$F_t^R = \sum_{i=1}^m L_{x+t}^i V_t^i$$

• Equilibrio tecnico del pool, per ogni *t*:

$$F_t^R = F_t^A$$

- Si potrebbe avere  $F_t^R \neq F_t^A$  poichè
  - > la mortalità effettiva nei vari stati può differire da quella attesa
  - ▷ l'invecchiamento (i.e., le frequenze di transizione) può differire da quello atteso
- Inoltre:
  - $ightharpoonup F_t^A, F_t^R$  si riferiscono all'intero pool
  - ▶ La differenza tra quanto realizzato e l'aspettativa varia da stato a stato
- New Più appropriato aggiustare i benefici per stato

- Agendo per stato, si avrà:
  - $\triangleright F_t^{i,R}$ : fondo richiesto per lo stato i
  - $\triangleright F_t^{i,A}$ : fondo disponibile per lo stato i
- Equilibrio tecnico per stato, per ogni t:

$$F_t^{i,R} = F_t^{i,A}, \quad i \in E$$

- ▶ Il mantenimento di tale equilibrio può richiedere l'aggiustamento dei benefici per stato
- Il fondo richiesto per lo stato i è definito come

$$F_t^{i,R} = L_{x+t}^i V_t^i$$

• La definizione di  ${\cal F}_t^{i,A}$  richiede una regola di cross-subsidy tra gli stati

Fondo disponibile pre-adj beneficio 
$$F_t^{i,A} = \overbrace{(F_{t-1}^{i,A} - L_{x+t-1}B_{t-1}^i)(1+r)}^{\text{Fondo disponibile pre-adj beneficio}} + \overbrace{\sum_{j < i}^{\text{Cross-subsidy accreditata ad i}}}^{\text{Cross-subsidy accreditata ad i}} + \sum_{j < i}^{\text{Cross-subsidy accreditata ad i}} - \sum_{j > i}^{m} L_{x+t-1}^{i} \widetilde{p}_{x+t-1}^{i} V_{t-}^{j}$$

$$- \underbrace{\sum_{j > i}^{m} L_{x+t-1}^{i} \widetilde{p}_{x+t-1}^{i} V_{t-}^{j}}_{\text{Cross-subsidy rilasciata da i}}^{\text{Cross-subsidy rilasciata da i}}$$

#### dove

- $V^i_{t^-} = \sum_{j \geq i}^m B_{t-1}{}^j \ddot{a}^{i,j}_{x+t}$  è il fondo richiesto a livello individuale nello stato i pre-aggiustamento del beneficio
- ullet  $X_t^i$  è un fondo residuale accreditato allo stato i in virtù degli stati che diventano privi di individui

 Con un pò di algebra attuariale, l'equazione del fondo disponibile diventa:

$$\begin{split} F_t^{i,A} &= L_{x+t-1}^i p_{x+t-1}^{i,i} V_{t-}^i + \sum_{j < i} L_{x+t-1}^j \tilde{p}_{x+t-1}^{j,i} V_{t-}^i \\ &- \sum_{j > i}^m L_{x+t-1}^i \left( \tilde{p}_{x+t-1}^{i,j} - p_{x+t-1}^{i,j} \right) V_{t-}^j \end{split}$$

- La differenza tra fondo disponibile e fondo richiesto può esser originata da:
  - $\,\rhd\,$  Numero effettivo di membri nello stato i diverso da quello atteso, i.e  $p^{i,i}_{x+t-1} \neq \tilde{p}^{i,i}_{x+t-1}$
  - Numero di transizioni nello stato  $j,\,j>i$ , diverso da quello atteso, i.e.  $p_{x+t-1}^{i,j} \neq \tilde{p}_{x+t-1}^{i,j}$

## Multi-state GSA: Aggiustamento dei benefici

- Aggiustamento tale che  $F_t^{i,R} = F_t^{i,A}$
- ullet A partire dallo stato m, backward fino allo stato 1
- Interpretazione dell'aggiustamento (in base al fondo individuale richiesto)

$$V_t^i = \underbrace{\frac{p_{x+t-1}^{i,i}}{\widetilde{p}_{x+t-1}^{i,i}}}_{\text{Adj}} V_{t^-}^i - \underbrace{\frac{\sum\limits_{j < i} L_{x+t-1}^j \widetilde{p}_{x+t-1}^{j,i}}{L_{x+t-1}^i \widetilde{p}_{x+t-1}^{i,i}}}_{\text{Cross-subsidy}} (V_t^i - V_{t^-}^i) - \underbrace{\frac{\sum\limits_{j > i} \left(\widetilde{p}_{x+t-1}^{i,j} - p_{x+t-1}^{i,j}\right)}{\widetilde{p}_{x+t-1}^{i,i}}}_{\text{Cross-subsidy}} V_{t^-}^j \\ \text{esperienza} & \text{accreditata a} & \text{rilasciata} \\ \text{mortalità} & \text{stato i} & \text{allo stato j} \\ \text{stato i} & \text{(atteso vs} & \text{(atteso vs} \\ \text{realizzato)} & \text{realizzato)} \\ \end{cases}$$

## Multi-state GSA: Applicazione numerica

#### Dati

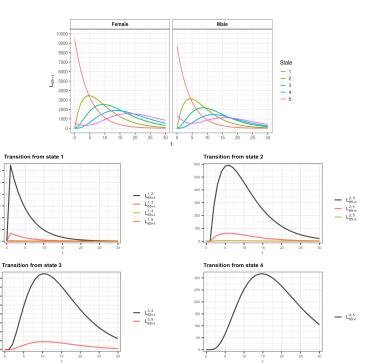
- Età d'ingresso x=65
- $L_x = 1000$
- Benefici fino a x=95
- Benefici iniziali:  $B_0^1=1$  nello stato 1,  $B_0^i=1.2B_0^{i-1}$  negli stati i>1

#### Calibrazione modello

- Coorte di riferimento: popolazione Australiana 1920
- Fonte: Human Mortality Database
- Intervallo di età fitting (65-100)
- Numbero di stati: m = 5
- Mean Squared Error minimization

#### Simulazione numero di transizioni

- $L_{x+t-1}^{i,j} \sim Multinom\left(L_{x+t-1}^{i}p_{x+t-1}^{i,j}\right)$
- frequenze di transizione a 1 anno realizzate:  $\hat{p}_{x+t-1}^{i,j} = rac{L_{x+t-1}^{i,j}}{L_{x+t-1}^{i}}$



1500 -

1250 -1000 -

750 •

500

250 o -[.]

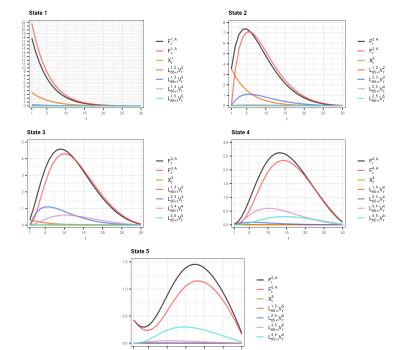
350 -300 -

250 -200 -

150 -

100 -

50 -



## Multi-state GSA: Applicazione numerica

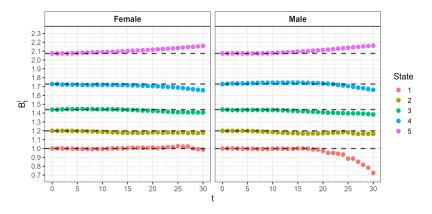


Figure: Profilo temporale dei benefici per stato d'invecchiamento.

#### Multi-state GSA: introduzione della solidarietà

- Stati d'invecchiamento sono latenti: uso di variabili proxy, ma non replicazione esatta del profilo biologico
- Dai benefici per stato alle classi di beneficio
- Classi di beneficio:  $m^* \leq m \leadsto E^* = \{1, 2, \dots, m^*\}$
- $l_{x+t}^k$ : numero di aderenti in vita al tempo t nella classe di beneficio  $k \in E^*$ . Deve aversi che  $\sum_{i \in E} L_{x+t}^i = \sum_{k \in E^*} l_{x+t}^k$
- $\overline{B}_t^k$ : beneficio in t per la classe di beneficio  $k \in E^*$
- Per ogni t, deve valere che

$$\sum_{i \in E} L_{x+t}^i B_t^i = \sum_{k \in E^*} l_{x+t}^k \overline{B}_t^k$$

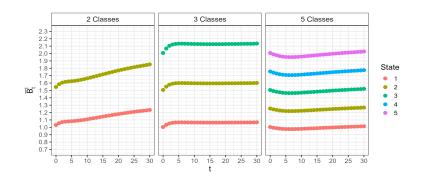
#### Multi-state GSA: introduzione della solidarietà

$$\overline{B}_t^k = u^k \overline{B}_t^1, \quad k = 2, 3, \dots, m^*$$

- Ragionevolmente:  $1 < u^2 < u^3 < \dots < u^{m^*}$
- $\overline{B}^k_t < B^i_t$ : individui che contribuiscono alla solidarietà
- ullet  $\overline{B}_t^k > B_t^i$ , individui che ricevono solidarietà

#### Multi-state GSA: introduzione della solidarietà

- $m^* = 2$ : con  $u^2 = 1.5$ ,  $l^1_{x+t} = L^1_{x+t} + L^2_{x+t}$  e  $l^2_{x+t} = L^3_{x+t} + L^4_{x+t} + L^5_{x+t}$
- $m^* = 3$ : con  $u^2 = 1.5$ ,  $u^3 = 2$ ,  $l^1_{x+t} = L^1_{x+t} + L^2_{x+t}$ ,  $l^2_{x+t} = L^3_{x+t} + L^4_{x+t}$  e  $l^3_{x+t} = L^5_{x+t}$
- $m^*=5$ : con  $u^2=1.25$ ,  $u^3=1.5$ ,  $u^4=1.75$ ,  $u^5=2$  e  $l^k_{x+t}=L^i_{x+t}$  per ogni  $k,i=1,\ldots,5$ , con k=i



- E se avessimo accesso ai dati biologici sulla salute degli assicurati?
- Pay-As-You-Live (o wellness insurance): è una forma assicurativa interattiva di tipo usage-based a supporto della gestione dello stato di salute dell'assicurato
- Uso di applicazioni e sensori per collezionare dati real-time sulla salute del cliente (peso, pressione arteriosa, dieta, qualità del sonno, storia clinica, etc.)
  - ▶ Assicurati virtuosi nella gestione della propria salute sono premiati finanziariamente: riduzioni di premio o bonus
- Forma assicurativa che introduce la digital disruption nel mercato assicurativo vita e salute
- Molti aspettivi positivi e molti aspetti critici da esplorare

#### Pay-as-you-live (PAYL)

Technology, including wearables, will drastically impact life and health insurance



Figure: Fonte: Ernst & Young (2015). Usage-based Insurance: the New Normal?

#### PAYL benefits overview

#### Benefits to society

- Promote/encourage healthy lifestyle habits
- Foster healthier society
- Reduce health care costs
- Become a more productive society by managing fatigue (i.e. sleep pattern)

#### Benefits to insurers

- Ability to price premiums on an individualized basis
- Overall reduction of claims frequency, severity, costs
- Develop/market highly differentiated insurance products
- Shortest, least risky and highest value go-to-market solution
- Ability to deploy within 3 phases, 5 programs, with 7 solutions, in 9 steps
- Most cost effective healthcare telematics solutions on the market

#### Benefits to individuals

- More control on the premium's cost (improving living standards = lower prices)
- Active feedback on living habits thus improving health
- Interactive web portal for 100% self service
- Smartphone applications allowing 24/7 in-the-palm-of-your-hand convenience
- User-friendly wearable fitness tracker device solutions

#### Benefits to employers

- Customizable rates reduces cost
- Overall reduction of claims frequency, severity, costs
- Reduce/manage/track workers compensation
- Ability to offer differentiated solutions
- Access to all data/profiles/risk
- More productive employees

Figure: Fonte: Ernst & Young (2015). Usage-based Insurance: the New Normal?

#### Criticità da affrontare:

- Scarso livello di digital and health literacy
- Quantificare comportamenti individuali complessi
  - Limitazioni nello stile di vita sano a causa della condizione socio-economica o per stati di salute mentale
- The burden of proof: interpretare se i dati dell'ass.to indicano uno stile di vita sano con effetti positivi o uno stile di vita sano con potenziali effetti negativi
  - A partire dai dati, come distinguere tra risk-avoidance behavior e risk-taking behavior?
- Data privacy, protection e regolamentazioni di merito
- Dalla mutualità (modello assicurativo collettivo) all'individualizzazione del rischio

## Grazie per la vostra attenzione

Contact: mario.marino@deams.units.it

- Albrecher, H., Bladt, M., Bladt, M., Yslas, J. (2022). Mortality modeling and regression with matrix distributions. *Insurance:Mathematics and Economics*, 107, 68–87.
- Alvarez, J.A., Vaupel, J. W. (2023). Mortality as a function of survival. *Demography*, 60(1): 327-342.
- Basellini, U., Camarda, C.G., Booth, H.(2023). Thirty years on: A review of the Lee–Carter method for forecasting mortality. *International Journal of Forecasting*, 39, 1033–1049.
- Cheng, B., Jones, B., Liu, X., Ren, J. (2021). The Mathematical Mechanism of Biological Aging. *North American Actuarial Journal*, 25(1), 73-93.
  - Jackson, S.H.D., Weale, M.R., Weale, R.A. (2003). Biological age What is it and can it be measured?. *Archives of Gerontology and Geriatrics*, 36(2), 103-115.
- Jylhava, J., Pedersen, N.L., Hagg, S. (2017) Biological age predictors. *EBioMedicine*, 21: 29-36.

- Lin, S., Liu, X. (2007).Markov Aging Process and Phase-Type Law of Mortality. North American Actuarial Journal, 11(4), 92-109.
   Milevsky, M. A. (2020). Calibrating Gompertz in reverse: What is your longevity-risk-adjusted global age?. Insurance: Mathematics and
- Economics, 92, 147-161.

  Piggott, J., Valdez, E.A., Detzel, B. (2005). The Simple Analytics of a Pooled Annuity Fund. Journal of Risk and Insurance, 72, 497-520.
- mortality and implications for a viable life annuity market. *Insurance: Mathematics and Economics*, 51, 322-332.

  Willemse, W.J., Kaas, R. (2007). Rational reconstruction of frailty-based mortality models by a generalisation of Gompertz' law of

mortality. Insurance: Mathematics and Economics, 40(3): 468-484.

Su, S., Sherris, M. (2012). Heterogeneity of Australian population